Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Front Immunol ; 13: 1066176, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2198907

RESUMEN

Introduction: SARS-CoV-2 infection results in varying disease severity, ranging from asymptomatic infection to severe illness. A detailed understanding of the immune response to SARS-CoV-2 is critical to unravel the causative factors underlying differences in disease severity and to develop optimal vaccines against new SARS-CoV-2 variants. Methods: We combined single-cell RNA and T cell receptor sequencing with CITE-seq antibodies to characterize the CD8+ T cell response to SARS-CoV-2 infection at high resolution and compared responses between mild and severe COVID-19. Results: We observed increased CD8+ T cell exhaustion in severe SARS-CoV-2 infection and identified a population of NK-like, terminally differentiated CD8+ effector T cells characterized by expression of FCGR3A (encoding CD16). Further characterization of NK-like CD8+ T cells revealed heterogeneity among CD16+ NK-like CD8+ T cells and profound differences in cytotoxicity, exhaustion, and NK-like differentiation between mild and severe disease conditions. Discussion: We propose a model in which differences in the surrounding inflammatory milieu lead to crucial differences in NK-like differentiation of CD8+ effector T cells, ultimately resulting in the appearance of NK-like CD8+ T cell populations of different functionality and pathogenicity. Our in-depth characterization of the CD8+ T cell-mediated response to SARS-CoV-2 infection provides a basis for further investigation of the importance of NK-like CD8+ T cells in COVID-19 severity.


Asunto(s)
Linfocitos T CD8-positivos , COVID-19 , Humanos , SARS-CoV-2 , Anticuerpos
2.
Med (N Y) ; 3(10): 705-721.e11, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: covidwho-2076532

RESUMEN

BACKGROUND: The continual emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern, in particular the newly emerged Omicron (B.1.1.529) variant and its BA.X lineages, has rendered ineffective a number of previously FDA emergency use authorized SARS-CoV-2 neutralizing antibody therapies. Furthermore, those approved antibodies with neutralizing activity against Omicron BA.1 are reportedly ineffective against the subset of Omicron subvariants that contain a R346K substitution, BA.1.1, and the more recently emergent BA.2, demonstrating the continued need for discovery and characterization of candidate therapeutic antibodies with the breadth and potency of neutralizing activity required to treat newly diagnosed COVID-19 linked to recently emerged variants of concern. METHODS: Following a campaign of antibody discovery based on the vaccination of Harbor H2L2 mice with defined SARS-CoV-2 spike domains, we have characterized the activity of a large collection of spike-binding antibodies and identified a lead neutralizing human IgG1 LALA antibody, STI-9167. FINDINGS: STI-9167 has potent, broad-spectrum neutralizing activity against the current SARS-COV-2 variants of concern and retained activity against each of the tested Omicron subvariants in both pseudotype and live virus neutralization assays. Furthermore, STI-9167 nAb administered intranasally or intravenously provided protection against weight loss and reduced virus lung titers to levels below the limit of quantitation in Omicron-infected K18-hACE2 transgenic mice. CONCLUSIONS: With this established activity profile, a cGMP cell line has been developed and used to produce cGMP drug product intended for intravenous or intranasal use in human clinical trials. FUNDING: Funded by CRIPT (no. 75N93021R00014), DARPA (HR0011-19-2-0020), and NCI Seronet (U54CA260560).


Asunto(s)
Anticuerpos Neutralizantes , Tratamiento Farmacológico de COVID-19 , Administración Intranasal , Animales , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Humanos , Inmunoglobulina G , Glicoproteínas de Membrana , Ratones , Pruebas de Neutralización , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Proteínas del Envoltorio Viral
3.
Sci Rep ; 11(1): 24490, 2021 12 29.
Artículo en Inglés | MEDLINE | ID: covidwho-1594104

RESUMEN

During the first wave of Covid-19 infections in Germany in April 2020, clinics reported a shortage of filtering face masks with aerosol retention> 94% (FFP2 & 3, KN95, N95). Companies all over the world increased their production capacities, but quality control of once-certified materials and masks came up short. To help identify falsely labeled masks and ensure safe protection equipment, we tested 101 different batches of masks in 993 measurements with a self-made setup based on DIN standards. An aerosol generator provided a NaCl test aerosol which was applied to the mask. A laser aerosol spectrometer measured the aerosol concentration in a range from 90 to 500 nm to quantify the masks' retention. Of 101 tested mask batches, only 31 batches kept what their label promised. Especially in the initial phase of the pandemic in Germany, we observed fluctuating mask qualities. Many batches show very high variability in aerosol retention. In addition, by measuring with a laser aerosol spectrometer, we were able to show that not all masks filter small and large particles equally well. In this study we demonstrate how important internal and independent quality controls are, especially in times of need and shortage of personal protection equipment.


Asunto(s)
COVID-19/prevención & control , COVID-19/transmisión , Máscaras/estadística & datos numéricos , Aerosoles , Filtración/instrumentación , Alemania , Humanos , Máscaras/normas , Máscaras/tendencias , Respiradores N95/normas , Respiradores N95/estadística & datos numéricos , Exposición Profesional/prevención & control , Pandemias/prevención & control , Equipo de Protección Personal/normas , Control de Calidad , Dispositivos de Protección Respiratoria/normas , SARS-CoV-2/patogenicidad
4.
Int J Environ Res Public Health ; 18(15)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1325654

RESUMEN

Misinformation that accompanied the current SARS-CoV-2 pandemic led to an impaired risk perception, resulting in the refusal of personal protection measures, as well as a reduced willingness to receive a vaccination. In order to identify factors that might influence people's attitudes towards COVID-19 policies and engagement in mitigation measures, we carried out a cross-sectional study in Germany. Altogether, n = 808 participants completed our questionnaire concerning items on demographics, media consumption, risk perception, and trust in health authorities, as well as willingness to receive a vaccination. An overwhelming majority of our participants perceived SARS-CoV-2 as a health threat (85.7%), and almost two thirds (63.5%) mentioned they would get vaccinated against SARS-CoV-2 when a vaccination was available. A greater likelihood of vaccination intention was associated with being male (71.5% male vs. 60% female, p < 0.05), left-wing voting, trusting health authorities, using public media as an information source about COVID-19, and, in particular, perceiving COVID-19 as a health threat. A better understanding of factors that contribute to vaccine hesitancy is indispensable in order to eliminate doubts, increase vaccination rates, and create herd immunity, to stop further virus transmission.


Asunto(s)
COVID-19 , Pandemias , Actitud , Vacunas contra la COVID-19 , Estudios Transversales , Femenino , Alemania/epidemiología , Humanos , Masculino , Pandemias/prevención & control , Política , SARS-CoV-2 , Vacunación
5.
mBio ; 12(1)2021 02 16.
Artículo en Inglés | MEDLINE | ID: covidwho-1088198

RESUMEN

The global coronavirus disease 2019 (COVID-19) pandemic has mobilized efforts to develop vaccines and antibody-based therapeutics, including convalescent-phase plasma therapy, that inhibit viral entry by inducing or transferring neutralizing antibodies (nAbs) against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (CoV2-S). However, rigorous efficacy testing requires extensive screening with live virus under onerous biosafety level 3 (BSL3) conditions, which limits high-throughput screening of patient and vaccine sera. Myriad BSL2-compatible surrogate virus neutralization assays (VNAs) have been developed to overcome this barrier. Yet, there is marked variability between VNAs and how their results are presented, making intergroup comparisons difficult. To address these limitations, we developed a standardized VNA using CoV2-S pseudotyped particles (CoV2pp) based on vesicular stomatitis virus bearing the Renilla luciferase gene in place of its G glycoprotein (VSVΔG); this assay can be robustly produced at scale and generate accurate neutralizing titers within 18 h postinfection. Our standardized CoV2pp VNA showed a strong positive correlation with CoV2-S enzyme-linked immunosorbent assay (ELISA) results and live-virus neutralizations in confirmed convalescent-patient sera. Three independent groups subsequently validated our standardized CoV2pp VNA (n > 120). Our data (i) show that absolute 50% inhibitory concentration (absIC50), absIC80, and absIC90 values can be legitimately compared across diverse cohorts, (ii) highlight the substantial but consistent variability in neutralization potency across these cohorts, and (iii) support the use of the absIC80 as a more meaningful metric for assessing the neutralization potency of a vaccine or convalescent-phase sera. Lastly, we used our CoV2pp in a screen to identify ultrapermissive 293T clones that stably express ACE2 or ACE2 plus TMPRSS2. When these are used in combination with our CoV2pp, we can produce CoV2pp sufficient for 150,000 standardized VNAs/week.IMPORTANCE Vaccines and antibody-based therapeutics like convalescent-phase plasma therapy are premised upon inducing or transferring neutralizing antibodies that inhibit SARS-CoV-2 entry into cells. Virus neutralization assays (VNAs) for measuring neutralizing antibody titers (NATs) are an essential part of determining vaccine or therapeutic efficacy. However, such efficacy testing is limited by the inherent dangers of working with the live virus, which requires specialized high-level biocontainment facilities. We therefore developed a standardized replication-defective pseudotyped particle system that mimics the entry of live SARS-CoV-2. This tool allows for the safe and efficient measurement of NATs, determination of other forms of entry inhibition, and thorough investigation of virus entry mechanisms. Four independent labs across the globe validated our standardized VNA using diverse cohorts. We argue that a standardized and scalable assay is necessary for meaningful comparisons of the myriad of vaccines and antibody-based therapeutics becoming available. Our data provide generalizable metrics for assessing their efficacy.


Asunto(s)
COVID-19/diagnóstico , COVID-19/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/patogenicidad , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Ensayo de Inmunoadsorción Enzimática , Humanos , Pruebas de Neutralización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA